Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Daqing Shi,^{a,b}* Xiangshan Wang^a and Qiya Zhuang^a

^aDepartment of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ^bThe Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou 221116, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study T = 291 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.039 wR factor = 0.107 Data-to-parameter ratio = 12.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{22}H_{18}CINO_3$, was synthesized by the reaction of 2-naphthol with ethyl 2-cyano-3-(4-chlorophenyl)-acrylate in the presence of triethylbenzylammonium chloride in water. X-ray analysis reveals that the pyran ring adopts a boat conformation.

chromene-2-carboxylate

Ethyl 3-amino-1-(4-chlorophenyl)-1H-benzo[f]-

Received 6 September 2004 Accepted 13 September 2004 Online 18 September 2004

Comment

4*H*-Chromene is a construction unit of some natural products. 4*H*-Chromenes with amino and cyano groups are also the synthons of some special natural products (Hatokeyama *et al.*, 1998; O'Callaghan & McMurry, 1995). We have reported the synthesis of some 4*H*-chromene derivatives (Shi *et al.*, 2002; Zhuang *et al.*, 2002). As part of our program aimed at developing new and environmentally friendly methodologies for the preparation of fine chemicals (Shi *et al.*, 2003), we have synthesized the title compound, (I), in water and report here its X-ray crystal structure.

The title compound is shown in Fig. 1. The bond lengths and angles in (I) have normal values (Table 1). The pyran ring adopts a boat conformation: atoms C15, C16, C18 and C19 form the least-squares plane, while atoms O1 and C17 deviate from this plane by 0.137 (2) and 0.292 (2) Å, respectively. A similar conformation was observed in the structure of 2-amino-4-(2-chlorophenyl)-3-ethoxycarbonyl-4H-benzo[f]chromene (Zhuang et al., 2003). The naphthalene ring system is essentially planar. The naphthalene and the substituted phenyl ring planes form dihedral angles of 6.94(2) and $88.86(3)^\circ$, respectively, with the C15/C16/C18/C19 plane. In addition, because of the existence of a conjugated system, the C19–N bond length of 1.350 (2) Å is shorter than the typical Csp^2 -N bond distance (Lorente *et al.*, 1995). The sum of the bond angles [351.8°] around the N atom indicates a slightly pyramidal geometry. An intramolecular hydrogen bond is formed between the amine group and atom O3 of the carbonyl group (see Table 2).

 $\ensuremath{\mathbb{C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The molecular packing in the crystal structure of (I).

Experimental

The title compound, (I), was prepared by the reaction of 2-naphthol (0.72 g, 5 mmol) with ethyl 2-cyano-3-(4-chlorophenyl)acrylate (1.18 g, 5 mmol) in the presence of triethylbenzylammonium chloride (0.2 g) in water (10 ml) at 363 K for 14 h (yield 91%, m.p. 463–465 K). IR: 3475, 3325 (NH₂), 1675 (CO), 1630, 1505, 1480, 825 (phenyl ring); ¹H NMR; 1.26 (3H, *t*, *J* = 7.2 Hz, CH₃), 4.09 (2H, *q*, *J* = 7.2 Hz, OCH₂), 5.51 (1H, *s*, CH), 7.23–7.53 (7H, *m*, ArH), 7.65 (2H, *s*, NH₂), 7.92 (2H, *d*, *J* = 8.0 Hz, ArH), 7.99 (1H, *d*, *J* = 8.0 Hz, ArH). Analysis calculated for $C_{22}H_{18}CINO_3$: C 69.57, H 4.78, N 3.69%; found: C 69.46, H 4.98, N

3.80%. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an *N*,*N*-dimethylformamide–water solution.

Z = 2

 $D_{\rm r} = 1.367 {\rm Mg m}^{-3}$

0.54 \times 0.50 \times 0.32 mm

 $R_{\rm int}=0.010$

 $\theta_{\text{max}} = 25.0^{\circ}$ $h = 0 \rightarrow 11$

 $\begin{array}{l} k = -11 \rightarrow 10 \\ l = -13 \rightarrow 12 \end{array}$

3 standard reflections

every 97 reflections

intensity decay: 3.6%

 $w = 1/[\sigma^2(F_o^2) + (0.054P)^2]$

+ 0.0607P] where $P = (F_o^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Extinction correction: *SHELXL*97 Extinction coefficient: 0.025 (3)

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 2.7-12.7^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 291 (2) KBlock. colorless

Crystal data

$C_{22}H_{18}CINO_3$
$M_r = 379.82$
Triclinic, P1
a = 9.292 (1) Å
b = 9.449(1) Å
c = 10.973 (1) Å
$\alpha = 94.99 \ (1)^{\circ}$
$\beta = 98.14 \ (2)^{\circ}$
$\gamma = 102.84 \ (1)^{\circ}$
$V = 922.85 (18) \text{ Å}^3$
× ,

Data collection

Siemens P4 diffractometer ω scans Absorption correction: ψ scans (XSCANS; Siemens, 1994) $T_{min} = 0.852, T_{max} = 0.929$ 3558 measured reflections 3229 independent reflections 2323 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.107$ S = 1.06 3229 reflections 254 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

O1-C19	1.358 (2)	N-C19	1.350 (2)
O1-C15	1.394 (2)	C15-C16	1.363 (2)
O2-C20	1.349 (2)	C16-C17	1.502 (2)
O2-C21	1.452 (2)	C17-C18	1.514 (2)
O3-C20	1.227 (2)		
C19-O1-C15	118.58 (14)	C19-C18-C17	120.20 (16)
C20-O2-C21	116.71 (15)	C20-C18-C17	120.77 (16)
C16-C15-O1	122.16 (16)	N-C19-C18	126.8 (2)
O1-C15-C14	114.03 (17)	N-C19-O1	110.69 (18)
C15-C16-C17	120.03 (15)	C18-C19-O1	122.53 (16)
C16-C17-C18	110.48 (14)	O3-C20-O2	121.29 (17)
C16-C17-C4	111.09 (13)	O3-C20-C18	126.09 (18)
C18-C17-C4	110.76 (13)	O2-C20-C18	112.62 (15)
C19-C18-C20	119.02 (16)		
C19-O1-C15-C16	-15.3 (2)	C20-C18-C19-O1	-171.58 (15)
C19-O1-C15-C14	166.09 (15)	C17-C18-C19-O1	9.7 (3)
C4-C17-C18-C19	98.60 (18)	C15-O1-C19-N	-169.63(14)
C4-C17-C18-C20	-80.12(19)	C15-O1-C19-C18	11.5 (2)

Table 2Hydrogen-bonding geometry (Å, °).

Trydrogen-boliding geometry (A,).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N-H1A\cdots O3$	1.01 (3)	1.89 (3)	2.690 (3)	133 (2)

Amino atoms H1A and H1B were refined isotropically. The positions of the other H atoms were calculated and refined as riding, with C-H = 0.93–0.98 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 1997); program(s) used to solve structure: *SHELXTL*; program(s) used to refine

structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the foundation of the 'Surpassing Project' of Jiangsu Province for financial support.

References

Hatokeyama, S., Ochi, N., Numata, H. & Takano, S. (1998). J. Chem. Soc. Chem. Commun. pp. 1202–1204.

- Lorente, A., Galan, C., Fonseca, I. & Sanz-Aparicio, J. (1995). *Can. J. Chem.* **73**, 1546–1555.
- O'Callaghan, C. N. & McMurry, T. B. H. (1995). J. Chem. Res. (S), p. 214.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shi, D. Q., Chen, J., Zhuang, Q. Y. & Hu, H. W. (2003). J. Chem. Res. (S), pp. 674–675.
- Shi, D. Q., Wang, X. S. & Tu, S. J. (2002). Chin. J. Org. Chem. 22, 1053–1056. Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhuang, Q. Y., Shi, D. Q., Tu, S. J. & Wang, X. S. (2002). Chin. J. Appl. Chem. 19, 1019–1020.
- Zhuang, Q. Y., Shi, D. Q. & Wang, X. S.(2003). Acta Cryst. E59, 01474-01475.